Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e17581, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37408913

RESUMO

Tropical Triumfetta cordifolia (TC) fibre extracted from the equatorial region of Cameroon has been characterized as a potential fibre for textiles. An investigation of extraction parameters to soften this fibre is crucial to use it as a biobased material in the spinning process. To obtain textile quality fibres, 34 sodium hydroxide extraction tests were carried out to study the effect of extraction conditions on its characteristics. Thus, three levels of concentrations (0.5, 1.0 and 1.5 wt%), temperatures (80, 100 and 120 °C) and durations (120, 180 and 240min) were used for extraction by cooking, and at room temperature, durations of 120, 150 or 180 min with three concentrations (2.5, 3.0 and 3.5 wt%) were considered. Only 6 combinations produced fibres that were clear and soft to the touch, without defects (corrugations, stuck fibres) and without residual bark epidermis at the macroscopic scale. For these fibres, the dissolution of non-cellulosic substances, morphological, physical, thermal and mechanical properties depended on the austerity of the alkaline retting. Under mild conditions, the SEM surfaces of the fibres showed large residues of the middle lamella, which made the lignin content (10 wt%) and hydrophilic function higher. Under medium conditions, the fibre surfaces were clean and slightly wrinkled (at 80 °C; 120min). Under severe conditions, heterogeneous transverse shrinkage and wrinkling were observed and accompanied by cellulose degradation (39 wt%) with a significant reduction in tenacity at 16cN/tex. The medium extraction conditions were considered more effective, and their fibres showed cellulose content up to 49 wt%, density up to 1.39 g cm-3, "Fickian" moisture absorption kinetics with saturation up to 11 wt%, thermal stability up to 237 °C, Young's modulus up to 3.7 GPa, tensile strength up to 113 MPa and tenacity up to 40cN/tex. These new results were compared with lignocellulosic textile fibres in the literature, showing similarity with banana, sisal and jute fibres.

2.
Heliyon ; 8(8): e10127, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36033260

RESUMO

The wide dispersion of the properties of plant fiber bundles further limits their use. In this study, manual and retting methods were used to extract fiber bundles from the available and underutilized Ananas comosus (AC) leaf waste in Cameroon. These fibers were sampled in three zones: base, middle and head. The fibers extracted by retting in the different zones were found to have better thermal stability. A 2.5% solution of sodium hypochlorite was used for bleaching the various pineapple fibers. Density, fineness, functional groups, mechanical properties, water absorption and morphology of different fibers were characterized. Density and fineness decreased from the head to the base of the leaf and were lower for manually obtained fiber bundles. The peaks of the infrared spectra associated with the functional groups of the pineapple fibers change very little along with the leaf but are clearly more pronounced for the fibers extracted manually. Fibers in the middle of the leaf have been found to have slightly better mechanical and water absorption properties. All fiber bundles can rapidly absorb water following simple exponential kinetics. Bleaching partially removes non-cellulosic materials from the fibers with a transverse shrinkage effect, which improves their fineness, density and hydrophilic function. Unfortunately, it reduces their tensile strength and fracture toughness. These results show that the whole leaf can be used without restriction to extract manually or by retting the fiber bundles intended for the manufacture of textiles and composites. Furthermore, bleaching with sodium hypochlorite seems ineffective due to fiber degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...